Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2 GIF version

Theorem elin2 3155
 Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x 𝑋 = (𝐵𝐶)
Assertion
Ref Expression
elin2 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3 𝑋 = (𝐵𝐶)
21eleq2i 2120 . 2 (𝐴𝑋𝐴 ∈ (𝐵𝐶))
3 elin 3154 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
42, 3bitri 177 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
 Colors of variables: wff set class Syntax hints:   ∧ wa 101   ↔ wb 102   = wceq 1259   ∈ wcel 1409   ∩ cin 2944 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2952 This theorem is referenced by:  elin3  3156  fnres  5043  funfvima  5418
 Copyright terms: Public domain W3C validator