ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliniseg GIF version

Theorem eliniseg 4723
Description: Membership in an initial segment. The idiom (𝐴 “ {𝐵}), meaning {𝑥𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1 𝐶 ∈ V
Assertion
Ref Expression
eliniseg (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2 𝐶 ∈ V
2 elimasng 4721 . . . 4 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
3 df-br 3793 . . . 4 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
42, 3syl6bbr 191 . . 3 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
5 brcnvg 4544 . . 3 ((𝐵𝑉𝐶 ∈ V) → (𝐵𝐴𝐶𝐶𝐴𝐵))
64, 5bitrd 181 . 2 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
71, 6mpan2 409 1 (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1409  Vcvv 2574  {csn 3403  cop 3406   class class class wbr 3792  ccnv 4372  cima 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386
This theorem is referenced by:  epini  4724  iniseg  4725  dfco2a  4849  isoini  5485
  Copyright terms: Public domain W3C validator