ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioc2 GIF version

Theorem elioc2 8876
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elioc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))

Proof of Theorem elioc2
StepHypRef Expression
1 rexr 7100 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elioc1 8862 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
31, 2sylan2 274 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
4 mnfxr 8765 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
6 simpll 489 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 919 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
8 mnfle 8784 . . . . . . . 8 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
98ad2antrr 465 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ≤ 𝐴)
10 simpr2 920 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 < 𝐶)
115, 6, 7, 9, 10xrlelttrd 8797 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ < 𝐶)
121ad2antlr 466 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 8763 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
15 simpr3 921 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶𝐵)
16 ltpnf 8773 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1716ad2antlr 466 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 < +∞)
187, 12, 14, 15, 17xrlelttrd 8797 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 < +∞)
19 xrrebnd 8803 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 860 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1093 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
2322ex 112 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
24 rexr 7100 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1099 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
2623, 25impbid1 134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
273, 26bitrd 181 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 894  wcel 1407   class class class wbr 3789  (class class class)co 5537  cr 6916  +∞cpnf 7086  -∞cmnf 7087  *cxr 7088   < clt 7089  cle 7090  (,]cioc 8829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-cnex 7003  ax-resscn 7004  ax-pre-ltirr 7024  ax-pre-ltwlin 7025  ax-pre-lttrn 7026
This theorem depends on definitions:  df-bi 114  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-rab 2330  df-v 2574  df-sbc 2785  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-opab 3844  df-id 4055  df-po 4058  df-iso 4059  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-iota 4892  df-fun 4929  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-ioc 8833
This theorem is referenced by:  iocssre  8893
  Copyright terms: Public domain W3C validator