![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elmpt2cl2 | GIF version |
Description: If a two-parameter class is not empty, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpt2cl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
elmpt2cl2 | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpt2cl.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | elmpt2cl 5749 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
3 | 2 | simprd 112 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 (class class class)co 5563 ↦ cmpt2 5565 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-iota 4917 df-fun 4954 df-fv 4960 df-ov 5566 df-oprab 5567 df-mpt2 5568 |
This theorem is referenced by: iccssico2 9098 elfzoel2 9285 |
Copyright terms: Public domain | W3C validator |