ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni2 GIF version

Theorem elni2 6469
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
Assertion
Ref Expression
elni2 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))

Proof of Theorem elni2
StepHypRef Expression
1 pinn 6464 . . 3 (𝐴N𝐴 ∈ ω)
2 0npi 6468 . . . . . 6 ¬ ∅ ∈ N
3 eleq1 2116 . . . . . 6 (𝐴 = ∅ → (𝐴N ↔ ∅ ∈ N))
42, 3mtbiri 610 . . . . 5 (𝐴 = ∅ → ¬ 𝐴N)
54con2i 567 . . . 4 (𝐴N → ¬ 𝐴 = ∅)
6 0elnn 4367 . . . . . 6 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
71, 6syl 14 . . . . 5 (𝐴N → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
87ord 653 . . . 4 (𝐴N → (¬ 𝐴 = ∅ → ∅ ∈ 𝐴))
95, 8mpd 13 . . 3 (𝐴N → ∅ ∈ 𝐴)
101, 9jca 294 . 2 (𝐴N → (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
11 nndceq0 4366 . . . . . 6 (𝐴 ∈ ω → DECID 𝐴 = ∅)
12 df-dc 754 . . . . . 6 (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1311, 12sylib 131 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))
1413anim1i 327 . . . 4 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
15 ancom 257 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴))
16 andi 742 . . . . 5 ((∅ ∈ 𝐴 ∧ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1715, 16bitr3i 179 . . . 4 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ ∅ ∈ 𝐴) ↔ ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
1814, 17sylib 131 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)))
19 noel 3255 . . . . . . . . 9 ¬ ∅ ∈ ∅
20 eleq2 2117 . . . . . . . . 9 (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅))
2119, 20mtbiri 610 . . . . . . . 8 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
2221pm2.21d 559 . . . . . . 7 (𝐴 = ∅ → (∅ ∈ 𝐴𝐴N))
2322impcom 120 . . . . . 6 ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N)
2423a1i 9 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴𝐴 = ∅) → 𝐴N))
25 df-ne 2221 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
26 elni 6463 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
2726simplbi2 371 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ≠ ∅ → 𝐴N))
2825, 27syl5bir 146 . . . . . 6 (𝐴 ∈ ω → (¬ 𝐴 = ∅ → 𝐴N))
2928adantld 267 . . . . 5 (𝐴 ∈ ω → ((∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴N))
3024, 29jaod 647 . . . 4 (𝐴 ∈ ω → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3130adantr 265 . . 3 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (((∅ ∈ 𝐴𝐴 = ∅) ∨ (∅ ∈ 𝐴 ∧ ¬ 𝐴 = ∅)) → 𝐴N))
3218, 31mpd 13 . 2 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 𝐴N)
3310, 32impbii 121 1 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639  DECID wdc 753   = wceq 1259  wcel 1409  wne 2220  c0 3251  ωcom 4340  Ncnpi 6427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-uni 3608  df-int 3643  df-suc 4135  df-iom 4341  df-ni 6459
This theorem is referenced by:  addclpi  6482  mulclpi  6483  mulcanpig  6490  addnidpig  6491  ltexpi  6492  ltmpig  6494  nnppipi  6498  archnqq  6572  enq0tr  6589
  Copyright terms: Public domain W3C validator