![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elon2 | GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
Ref | Expression |
---|---|
elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4138 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | elex 2611 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
3 | 1, 2 | jca 300 | . 2 ⊢ (𝐴 ∈ On → (Ord 𝐴 ∧ 𝐴 ∈ V)) |
4 | elong 4136 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
5 | 4 | biimparc 293 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ On) |
6 | 3, 5 | impbii 124 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∈ wcel 1434 Vcvv 2602 Ord word 4125 Oncon0 4126 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-in 2980 df-ss 2987 df-uni 3610 df-tr 3884 df-iord 4129 df-on 4131 |
This theorem is referenced by: tfrexlem 5983 |
Copyright terms: Public domain | W3C validator |