ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabi GIF version

Theorem eloprabi 5850
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabi.1 (𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))
eloprabi.2 (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))
eloprabi.3 (𝑧 = (2nd𝐴) → (𝜒𝜃))
Assertion
Ref Expression
eloprabi (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem eloprabi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2062 . . . . . 6 (𝑤 = 𝐴 → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
21anbi1d 446 . . . . 5 (𝑤 = 𝐴 → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
323exbidv 1765 . . . 4 (𝑤 = 𝐴 → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
4 df-oprab 5544 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
53, 4elab2g 2712 . . 3 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
65ibi 169 . 2 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
7 vex 2577 . . . . . . . . . . . 12 𝑥 ∈ V
8 vex 2577 . . . . . . . . . . . 12 𝑦 ∈ V
97, 8opex 3994 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
10 vex 2577 . . . . . . . . . . 11 𝑧 ∈ V
119, 10op1std 5803 . . . . . . . . . 10 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st𝐴) = ⟨𝑥, 𝑦⟩)
1211fveq2d 5210 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st ‘(1st𝐴)) = (1st ‘⟨𝑥, 𝑦⟩))
137, 8op1st 5801 . . . . . . . . 9 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
1412, 13syl6req 2105 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
15 eloprabi.1 . . . . . . . 8 (𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))
1614, 15syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜓))
1711fveq2d 5210 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd ‘(1st𝐴)) = (2nd ‘⟨𝑥, 𝑦⟩))
187, 8op2nd 5802 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1917, 18syl6req 2105 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
20 eloprabi.2 . . . . . . . 8 (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))
2119, 20syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜓𝜒))
229, 10op2ndd 5804 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd𝐴) = 𝑧)
2322eqcomd 2061 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑧 = (2nd𝐴))
24 eloprabi.3 . . . . . . . 8 (𝑧 = (2nd𝐴) → (𝜒𝜃))
2523, 24syl 14 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜒𝜃))
2616, 21, 253bitrd 207 . . . . . 6 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜃))
2726biimpa 284 . . . . 5 ((𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
2827exlimiv 1505 . . . 4 (∃𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
2928exlimiv 1505 . . 3 (∃𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
3029exlimiv 1505 . 2 (∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜃)
316, 30syl 14 1 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  cop 3406  cfv 4930  {coprab 5541  1st c1st 5793  2nd c2nd 5794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-iota 4895  df-fun 4932  df-fv 4938  df-oprab 5544  df-1st 5795  df-2nd 5796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator