ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpreima GIF version

Theorem elpreima 5314
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
elpreima (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))

Proof of Theorem elpreima
StepHypRef Expression
1 cnvimass 4716 . . . . 5 (𝐹𝐶) ⊆ dom 𝐹
21sseli 2969 . . . 4 (𝐵 ∈ (𝐹𝐶) → 𝐵 ∈ dom 𝐹)
3 fndm 5026 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43eleq2d 2123 . . . 4 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
52, 4syl5ib 147 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) → 𝐵𝐴))
6 fnfun 5024 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
7 fvimacnvi 5309 . . . . 5 ((Fun 𝐹𝐵 ∈ (𝐹𝐶)) → (𝐹𝐵) ∈ 𝐶)
86, 7sylan 271 . . . 4 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → (𝐹𝐵) ∈ 𝐶)
98ex 112 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) → (𝐹𝐵) ∈ 𝐶))
105, 9jcad 295 . 2 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) → (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
11 fvimacnv 5310 . . . . 5 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ((𝐹𝐵) ∈ 𝐶𝐵 ∈ (𝐹𝐶)))
1211funfni 5027 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) ∈ 𝐶𝐵 ∈ (𝐹𝐶)))
1312biimpd 136 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) ∈ 𝐶𝐵 ∈ (𝐹𝐶)))
1413expimpd 349 . 2 (𝐹 Fn 𝐴 → ((𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶) → 𝐵 ∈ (𝐹𝐶)))
1510, 14impbid 124 1 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1409  ccnv 4372  dom cdm 4373  cima 4376  Fun wfun 4924   Fn wfn 4925  cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938
This theorem is referenced by:  fniniseg  5315  fncnvima2  5316  rexsupp  5319  unpreima  5320  respreima  5323
  Copyright terms: Public domain W3C validator