![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elprnql | GIF version |
Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ B ∈ 𝐿) → B ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssnql 6462 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
2 | 1 | sselda 2939 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ B ∈ 𝐿) → B ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1390 〈cop 3370 Qcnq 6264 Pcnp 6275 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-coll 3863 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-iinf 4254 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-reu 2307 df-rab 2309 df-v 2553 df-sbc 2759 df-csb 2847 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-int 3607 df-iun 3650 df-br 3756 df-opab 3810 df-mpt 3811 df-id 4021 df-iom 4257 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-iota 4810 df-fun 4847 df-fn 4848 df-f 4849 df-f1 4850 df-fo 4851 df-f1o 4852 df-fv 4853 df-qs 6048 df-ni 6288 df-nqqs 6332 df-inp 6449 |
This theorem is referenced by: prubl 6469 prnmaxl 6471 prarloclemlt 6476 prarloclemlo 6477 prarloclem5 6483 genpdf 6491 genipv 6492 genpelvl 6495 genpml 6500 genprndl 6504 genpassl 6507 addnqprllem 6510 addnqprl 6512 addlocprlemeqgt 6515 addlocprlemgt 6517 addlocprlem 6518 nqprl 6533 prmuloc 6547 mulnqprl 6549 addcomprg 6554 mulcomprg 6556 distrlem1prl 6558 distrlem4prl 6560 1idprl 6566 ltsopr 6570 ltexprlemm 6574 ltexprlemopl 6575 ltexprlemopu 6577 ltexprlemupu 6578 ltexprlemdisj 6580 ltexprlemloc 6581 ltexprlemfl 6583 ltexprlemrl 6584 ltexprlemfu 6585 ltexprlemru 6586 addcanprleml 6588 addcanprlemu 6589 recexprlemloc 6603 recexprlem1ssl 6605 recexprlem1ssu 6606 recexprlemss1l 6607 aptiprleml 6611 aptiprlemu 6612 |
Copyright terms: Public domain | W3C validator |