Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi GIF version

Theorem elpwi 3396
 Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elpwi (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpwi
StepHypRef Expression
1 elpwg 3395 . 2 (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
21ibi 169 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1409   ⊆ wss 2945  𝒫 cpw 3387 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2952  df-ss 2959  df-pw 3389 This theorem is referenced by:  elpwid  3397  elelpwi  3398  elpw2g  3938  eldifpw  4236  iunpw  4239  f1opw2  5734
 Copyright terms: Public domain W3C validator