Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrel GIF version

Theorem elrel 4469
 Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 4379 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 117 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 2972 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 elvv 4429 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
53, 4sylib 131 1 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259  ∃wex 1397   ∈ wcel 1409  Vcvv 2574   ⊆ wss 2944  ⟨cop 3405   × cxp 4370  Rel wrel 4377 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-opab 3846  df-xp 4378  df-rel 4379 This theorem is referenced by:  eliunxp  4502  elres  4673  unielrel  4872  rntpos  5902
 Copyright terms: Public domain W3C validator