Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc GIF version

Theorem elsuc 4190
 Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1 𝐴 ∈ V
Assertion
Ref Expression
elsuc (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2 𝐴 ∈ V
2 elsucg 4188 . 2 (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2ax-mp 7 1 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
 Colors of variables: wff set class Syntax hints:   ↔ wb 103   ∨ wo 662   = wceq 1285   ∈ wcel 1434  Vcvv 2610  suc csuc 4149 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2987  df-sn 3423  df-suc 4155 This theorem is referenced by:  sucel  4194  suctr  4205  0elsucexmid  4337  tfrlemisucaccv  5995  tfr1onlemsucaccv  6011  tfrcllemsucaccv  6024
 Copyright terms: Public domain W3C validator