ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci GIF version

Theorem elsuci 4167
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4135 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2120 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3111 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 177 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 3420 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 688 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 118 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 639   = wceq 1259  wcel 1409  cun 2942  {csn 3402  suc csuc 4129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-sn 3408  df-suc 4135
This theorem is referenced by:  trsucss  4187  onsucelsucexmid  4282  ordsoexmid  4313  ordsuc  4314  ordpwsucexmid  4321  nnsucelsuc  6100  nntri3or  6102  nnmordi  6119  nnaordex  6130  phplem3  6347
  Copyright terms: Public domain W3C validator