ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2 GIF version

Theorem eluz2 8574
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
eluz2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))

Proof of Theorem eluz2
StepHypRef Expression
1 eluzel2 8573 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 simp1 915 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ∈ ℤ)
3 eluz1 8572 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
4 ibar 289 . . . 4 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁))))
53, 4bitrd 181 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁))))
6 3anass 900 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
75, 6syl6bbr 191 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁)))
81, 2, 7pm5.21nii 630 1 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  w3a 896  wcel 1409   class class class wbr 3791  cfv 4929  cle 7119  cz 8301  cuz 8568
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-cnex 7032  ax-resscn 7033
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-fv 4937  df-ov 5542  df-neg 7247  df-z 8302  df-uz 8569
This theorem is referenced by:  eluzuzle  8576  eluzelz  8577  eluzle  8580  uztrn  8584  eluzp1p1  8593  uznn0sub  8599  uz3m2nn  8610  1eluzge0  8611  2eluzge0OLD  8613  2eluzge1  8614  raluz2  8617  rexuz2  8619  peano2uz  8621  nn0pzuz  8625  uzind4  8626  nn0ge2m1nnALT  8649  elfzuzb  8985  uzsubsubfz  9012  ige2m1fz  9073  elfz0addOLD  9081  4fvwrd4  9098  elfzo2  9108  elfzouz2  9118  fzossrbm1  9130  fzossfzop1  9169  ssfzo12bi  9182  elfzonelfzo  9187  elfzomelpfzo  9188  fzosplitprm1  9191  fzostep1  9194  fzind2  9196  flqword2  9238  fldiv4p1lem1div2  9254  ibcval5  9630  resqrexlemoverl  9847  resqrexlemga  9849  oddge22np1  10192  nn0o  10218
  Copyright terms: Public domain W3C validator