Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni GIF version

Theorem elvvuni 4432
 Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni (𝐴 ∈ (V × V) → 𝐴𝐴)

Proof of Theorem elvvuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4430 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2577 . . . . . 6 𝑥 ∈ V
3 vex 2577 . . . . . 6 𝑦 ∈ V
42, 3uniop 4020 . . . . 5 𝑥, 𝑦⟩ = {𝑥, 𝑦}
52, 3opi2 3998 . . . . 5 {𝑥, 𝑦} ∈ ⟨𝑥, 𝑦
64, 5eqeltri 2126 . . . 4 𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦
7 unieq 3617 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
8 id 19 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = ⟨𝑥, 𝑦⟩)
97, 8eleq12d 2124 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴𝐴𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩))
106, 9mpbiri 161 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
1110exlimivv 1792 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
121, 11sylbi 118 1 (𝐴 ∈ (V × V) → 𝐴𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1259  ∃wex 1397   ∈ wcel 1409  Vcvv 2574  {cpr 3404  ⟨cop 3406  ∪ cuni 3608   × cxp 4371 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-opab 3847  df-xp 4379 This theorem is referenced by:  unielxp  5828
 Copyright terms: Public domain W3C validator