ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp2 GIF version

Theorem elxp2 4390
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
Assertion
Ref Expression
elxp2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp2
StepHypRef Expression
1 df-rex 2329 . . . 4 (∃𝑦𝐶 (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩)))
2 r19.42v 2484 . . . 4 (∃𝑦𝐶 (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩) ↔ (𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩))
3 an13 505 . . . . 5 ((𝑦𝐶 ∧ (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
43exbii 1512 . . . 4 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩)) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
51, 2, 43bitr3i 203 . . 3 ((𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
65exbii 1512 . 2 (∃𝑥(𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
7 df-rex 2329 . 2 (∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥(𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩))
8 elxp 4389 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
96, 7, 83bitr4ri 206 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  wrex 2324  cop 3405   × cxp 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-opab 3846  df-xp 4378
This theorem is referenced by:  opelxp  4401  xpiundi  4425  xpiundir  4426  ssrel2  4457  f1o2ndf1  5876  xpdom2  6335  elreal  6962
  Copyright terms: Public domain W3C validator