ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp2 GIF version

Theorem elxp2 4552
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
Assertion
Ref Expression
elxp2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp2
StepHypRef Expression
1 df-rex 2420 . . . 4 (∃𝑦𝐶 (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩)))
2 r19.42v 2586 . . . 4 (∃𝑦𝐶 (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩) ↔ (𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩))
3 an13 552 . . . . 5 ((𝑦𝐶 ∧ (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
43exbii 1584 . . . 4 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐵𝐴 = ⟨𝑥, 𝑦⟩)) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
51, 2, 43bitr3i 209 . . 3 ((𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
65exbii 1584 . 2 (∃𝑥(𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
7 df-rex 2420 . 2 (∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥(𝑥𝐵 ∧ ∃𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩))
8 elxp 4551 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
96, 7, 83bitr4ri 212 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wrex 2415  cop 3525   × cxp 4532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-opab 3985  df-xp 4540
This theorem is referenced by:  opelxp  4564  xpiundi  4592  xpiundir  4593  ssrel2  4624  f1o2ndf1  6118  xpdom2  6718  elreal  7629
  Copyright terms: Public domain W3C validator