ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz GIF version

Theorem elz 9056
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))

Proof of Theorem elz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2146 . . 3 (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0))
2 eleq1 2202 . . 3 (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ))
3 negeq 7955 . . . 4 (𝑥 = 𝑁 → -𝑥 = -𝑁)
43eleq1d 2208 . . 3 (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ))
51, 2, 43orbi123d 1289 . 2 (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
6 df-z 9055 . 2 ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)}
75, 6elrab2 2843 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3o 961   = wceq 1331  wcel 1480  cr 7619  0cc0 7620  -cneg 7934  cn 8720  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-rab 2425  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777  df-neg 7936  df-z 9055
This theorem is referenced by:  nnnegz  9057  zre  9058  elnnz  9064  0z  9065  elnn0z  9067  elznn0nn  9068  elznn0  9069  elznn  9070  znegcl  9085  zaddcl  9094  ztri3or0  9096  zeo  9156  addmodlteq  10171
  Copyright terms: Public domain W3C validator