![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en1bg | GIF version |
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
en1bg | ⊢ (A ∈ 𝑉 → (A ≈ 1𝑜 ↔ A = {∪ A})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 6215 | . . 3 ⊢ (A ≈ 1𝑜 ↔ ∃x A = {x}) | |
2 | id 19 | . . . . 5 ⊢ (A = {x} → A = {x}) | |
3 | unieq 3580 | . . . . . . 7 ⊢ (A = {x} → ∪ A = ∪ {x}) | |
4 | vex 2554 | . . . . . . . 8 ⊢ x ∈ V | |
5 | 4 | unisn 3587 | . . . . . . 7 ⊢ ∪ {x} = x |
6 | 3, 5 | syl6eq 2085 | . . . . . 6 ⊢ (A = {x} → ∪ A = x) |
7 | 6 | sneqd 3380 | . . . . 5 ⊢ (A = {x} → {∪ A} = {x}) |
8 | 2, 7 | eqtr4d 2072 | . . . 4 ⊢ (A = {x} → A = {∪ A}) |
9 | 8 | exlimiv 1486 | . . 3 ⊢ (∃x A = {x} → A = {∪ A}) |
10 | 1, 9 | sylbi 114 | . 2 ⊢ (A ≈ 1𝑜 → A = {∪ A}) |
11 | uniexg 4141 | . . . 4 ⊢ (A ∈ 𝑉 → ∪ A ∈ V) | |
12 | ensn1g 6213 | . . . 4 ⊢ (∪ A ∈ V → {∪ A} ≈ 1𝑜) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ (A ∈ 𝑉 → {∪ A} ≈ 1𝑜) |
14 | breq1 3758 | . . 3 ⊢ (A = {∪ A} → (A ≈ 1𝑜 ↔ {∪ A} ≈ 1𝑜)) | |
15 | 13, 14 | syl5ibrcom 146 | . 2 ⊢ (A ∈ 𝑉 → (A = {∪ A} → A ≈ 1𝑜)) |
16 | 10, 15 | impbid2 131 | 1 ⊢ (A ∈ 𝑉 → (A ≈ 1𝑜 ↔ A = {∪ A})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1242 ∃wex 1378 ∈ wcel 1390 Vcvv 2551 {csn 3367 ∪ cuni 3571 class class class wbr 3755 1𝑜c1o 5933 ≈ cen 6155 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-nul 3874 ax-pow 3918 ax-pr 3935 ax-un 4136 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-reu 2307 df-v 2553 df-sbc 2759 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-nul 3219 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-id 4021 df-suc 4074 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-iota 4810 df-fun 4847 df-fn 4848 df-f 4849 df-f1 4850 df-fo 4851 df-f1o 4852 df-fv 4853 df-1o 5940 df-en 6158 |
This theorem is referenced by: en1uniel 6220 |
Copyright terms: Public domain | W3C validator |