ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1bg GIF version

Theorem en1bg 6662
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
en1bg (𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))

Proof of Theorem en1bg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 6661 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 19 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 3715 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 2663 . . . . . . . 8 𝑥 ∈ V
54unisn 3722 . . . . . . 7 {𝑥} = 𝑥
63, 5syl6eq 2166 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 3510 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2153 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1562 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 120 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 uniexg 4331 . . . 4 (𝐴𝑉 𝐴 ∈ V)
12 ensn1g 6659 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 14 . . 3 (𝐴𝑉 → { 𝐴} ≈ 1o)
14 breq1 3902 . . 3 (𝐴 = { 𝐴} → (𝐴 ≈ 1o ↔ { 𝐴} ≈ 1o))
1513, 14syl5ibrcom 156 . 2 (𝐴𝑉 → (𝐴 = { 𝐴} → 𝐴 ≈ 1o))
1610, 15impbid2 142 1 (𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1316  wex 1453  wcel 1465  Vcvv 2660  {csn 3497   cuni 3706   class class class wbr 3899  1oc1o 6274  cen 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-reu 2400  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-suc 4263  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-1o 6281  df-en 6603
This theorem is referenced by:  en1uniel  6666
  Copyright terms: Public domain W3C validator