![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version |
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
Ref | Expression |
---|---|
enq0ex | ⊢ ~Q0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4336 | . . . 4 ⊢ ω ∈ V | |
2 | niex 6553 | . . . 4 ⊢ N ∈ V | |
3 | 1, 2 | xpex 4475 | . . 3 ⊢ (ω × N) ∈ V |
4 | 3, 3 | xpex 4475 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V |
5 | df-enq0 6665 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))} | |
6 | opabssxp 4434 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
7 | 5, 6 | eqsstri 3030 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) |
8 | 4, 7 | ssexi 3918 | 1 ⊢ ~Q0 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1285 ∃wex 1422 ∈ wcel 1434 Vcvv 2602 〈cop 3403 {copab 3840 ωcom 4333 × cxp 4363 (class class class)co 5537 ·𝑜 comu 6057 Ncnpi 6513 ~Q0 ceq0 6527 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-iinf 4331 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-opab 3842 df-iom 4334 df-xp 4371 df-ni 6545 df-enq0 6665 |
This theorem is referenced by: nqnq0 6682 addnnnq0 6690 mulnnnq0 6691 addclnq0 6692 mulclnq0 6693 prarloclemcalc 6743 |
Copyright terms: Public domain | W3C validator |