Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ref GIF version

Theorem enq0ref 6588
 Description: The equivalence relation for non-negative fractions is reflexive. Lemma for enq0er 6590. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0ref (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)

Proof of Theorem enq0ref
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4388 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)))
2 elxpi 4388 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N)))
3 ee4anv 1825 . . . . . 6 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) ↔ (∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
41, 2, 3sylanbrc 402 . . . . 5 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
5 eqtr2 2074 . . . . . . . . . . . 12 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩)
6 vex 2577 . . . . . . . . . . . . 13 𝑧 ∈ V
7 vex 2577 . . . . . . . . . . . . 13 𝑤 ∈ V
86, 7opth 4001 . . . . . . . . . . . 12 (⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩ ↔ (𝑧 = 𝑣𝑤 = 𝑢))
95, 8sylib 131 . . . . . . . . . . 11 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 = 𝑣𝑤 = 𝑢))
10 oveq1 5546 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑢))
11 oveq2 5547 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → (𝑣 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
1211equcoms 1610 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑣 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
1310, 12sylan9eq 2108 . . . . . . . . . . 11 ((𝑧 = 𝑣𝑤 = 𝑢) → (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
149, 13syl 14 . . . . . . . . . 10 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤))
1514ancli 310 . . . . . . . . 9 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤)))
1615ad2ant2r 486 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤)))
17 pinn 6464 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
18 nnmcom 6098 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ∈ ω) → (𝑣 ·𝑜 𝑤) = (𝑤 ·𝑜 𝑣))
1917, 18sylan2 274 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤N) → (𝑣 ·𝑜 𝑤) = (𝑤 ·𝑜 𝑣))
2019eqeq2d 2067 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤N) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2120ancoms 259 . . . . . . . . . . 11 ((𝑤N𝑣 ∈ ω) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2221ad2ant2lr 487 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2322ad2ant2l 485 . . . . . . . . 9 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤) ↔ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2423anbi2d 445 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑣 ·𝑜 𝑤)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
2516, 24mpbid 139 . . . . . . 7 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
26252eximi 1508 . . . . . 6 (∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
27262eximi 1508 . . . . 5 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
284, 27syl 14 . . . 4 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))
2928ancli 310 . . 3 (𝑓 ∈ (ω × N) → (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
30 vex 2577 . . . . 5 𝑓 ∈ V
31 eleq1 2116 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3231anbi1d 446 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
33 eqeq1 2062 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ 𝑓 = ⟨𝑧, 𝑤⟩))
3433anbi1d 446 . . . . . . . 8 (𝑥 = 𝑓 → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
3534anbi1d 446 . . . . . . 7 (𝑥 = 𝑓 → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
36354exbidv 1766 . . . . . 6 (𝑥 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
3732, 36anbi12d 450 . . . . 5 (𝑥 = 𝑓 → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
38 eleq1 2116 . . . . . . 7 (𝑦 = 𝑓 → (𝑦 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3938anbi2d 445 . . . . . 6 (𝑦 = 𝑓 → ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N))))
40 eqeq1 2062 . . . . . . . . 9 (𝑦 = 𝑓 → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ 𝑓 = ⟨𝑣, 𝑢⟩))
4140anbi2d 445 . . . . . . . 8 (𝑦 = 𝑓 → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩)))
4241anbi1d 446 . . . . . . 7 (𝑦 = 𝑓 → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
43424exbidv 1766 . . . . . 6 (𝑦 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
4439, 43anbi12d 450 . . . . 5 (𝑦 = 𝑓 → (((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
45 df-enq0 6579 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))}
4630, 30, 37, 44, 45brab 4036 . . . 4 (𝑓 ~Q0 𝑓 ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
47 anidm 382 . . . . 5 ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ↔ 𝑓 ∈ (ω × N))
4847anbi1i 439 . . . 4 (((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
4946, 48bitri 177 . . 3 (𝑓 ~Q0 𝑓 ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
5029, 49sylibr 141 . 2 (𝑓 ∈ (ω × N) → 𝑓 ~Q0 𝑓)
5149simplbi 263 . 2 (𝑓 ~Q0 𝑓𝑓 ∈ (ω × N))
5250, 51impbii 121 1 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
 Colors of variables: wff set class Syntax hints:   ∧ wa 101   ↔ wb 102   = wceq 1259  ∃wex 1397   ∈ wcel 1409  ⟨cop 3405   class class class wbr 3791  ωcom 4340   × cxp 4370  (class class class)co 5539   ·𝑜 comu 6029  Ncnpi 6427   ~Q0 ceq0 6441 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-oadd 6035  df-omul 6036  df-ni 6459  df-enq0 6579 This theorem is referenced by:  enq0er  6590
 Copyright terms: Public domain W3C validator