ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc GIF version

Theorem enqdc 7162
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩)

Proof of Theorem enqdc
StepHypRef Expression
1 mulclpi 7129 . . . 4 ((𝐴N𝐷N) → (𝐴 ·N 𝐷) ∈ N)
2 mulclpi 7129 . . . 4 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
3 pinn 7110 . . . . 5 ((𝐴 ·N 𝐷) ∈ N → (𝐴 ·N 𝐷) ∈ ω)
4 pinn 7110 . . . . 5 ((𝐵 ·N 𝐶) ∈ N → (𝐵 ·N 𝐶) ∈ ω)
5 nndceq 6388 . . . . 5 (((𝐴 ·N 𝐷) ∈ ω ∧ (𝐵 ·N 𝐶) ∈ ω) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
63, 4, 5syl2an 287 . . . 4 (((𝐴 ·N 𝐷) ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
71, 2, 6syl2an 287 . . 3 (((𝐴N𝐷N) ∧ (𝐵N𝐶N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
87an42s 578 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
9 enqbreq 7157 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
109dcbid 823 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
118, 10mpbird 166 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 819   = wceq 1331  wcel 1480  cop 3525   class class class wbr 3924  ωcom 4499  (class class class)co 5767  Ncnpi 7073   ·N cmi 7075   ~Q ceq 7080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-ni 7105  df-mi 7107  df-enq 7148
This theorem is referenced by:  enqdc1  7163
  Copyright terms: Public domain W3C validator