ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymd GIF version

Theorem ensymd 6294
Description: Symmetry of equinumerosity. Deduction form of ensym 6292. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ensymd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ensymd (𝜑𝐵𝐴)

Proof of Theorem ensymd
StepHypRef Expression
1 ensymd.1 . 2 (𝜑𝐴𝐵)
2 ensym 6292 . 2 (𝐴𝐵𝐵𝐴)
31, 2syl 14 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 3792  cen 6250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-er 6137  df-en 6253
This theorem is referenced by:  f1imaeng  6303  f1imaen2g  6304  en2sn  6321  xpdom3m  6339  phplem4  6349  phplem4dom  6355  php5dom  6356  phpm  6358  phplem4on  6360  dif1en  6368  fisbth  6371  fin0  6373  fin0or  6374  fientri3  6384  uzenom  9366
  Copyright terms: Public domain W3C validator