ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqerlem GIF version

Theorem eqerlem 6203
Description: Lemma for eqer 6204. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqerlem (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝑧,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem eqerlem
StepHypRef Expression
1 eqer.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21brabsb 4024 . 2 (𝑧𝑅𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵)
3 vex 2605 . . 3 𝑧 ∈ V
4 nfcsb1v 2939 . . . . 5 𝑥𝑧 / 𝑥𝐴
5 nfcsb1v 2939 . . . . 5 𝑥𝑤 / 𝑥𝐴
64, 5nfeq 2227 . . . 4 𝑥𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴
7 vex 2605 . . . . . 6 𝑤 ∈ V
8 nfv 1462 . . . . . . 7 𝑦 𝐴 = 𝑤 / 𝑥𝐴
9 vex 2605 . . . . . . . . . 10 𝑦 ∈ V
10 nfcv 2220 . . . . . . . . . 10 𝑥𝐵
11 eqer.1 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐵)
129, 10, 11csbief 2948 . . . . . . . . 9 𝑦 / 𝑥𝐴 = 𝐵
13 csbeq1 2912 . . . . . . . . 9 (𝑦 = 𝑤𝑦 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
1412, 13syl5eqr 2128 . . . . . . . 8 (𝑦 = 𝑤𝐵 = 𝑤 / 𝑥𝐴)
1514eqeq2d 2093 . . . . . . 7 (𝑦 = 𝑤 → (𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
168, 15sbciegf 2846 . . . . . 6 (𝑤 ∈ V → ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
177, 16ax-mp 7 . . . . 5 ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴)
18 csbeq1a 2917 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
1918eqeq1d 2090 . . . . 5 (𝑥 = 𝑧 → (𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
2017, 19syl5bb 190 . . . 4 (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
216, 20sbciegf 2846 . . 3 (𝑧 ∈ V → ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
223, 21ax-mp 7 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
232, 22bitri 182 1 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1285  wcel 1434  Vcvv 2602  [wsbc 2816  csb 2909   class class class wbr 3793  {copab 3846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848
This theorem is referenced by:  eqer  6204
  Copyright terms: Public domain W3C validator