![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqfunfv | GIF version |
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.) |
Ref | Expression |
---|---|
eqfunfv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 4982 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | funfn 4982 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
3 | eqfnfv2 5319 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 285 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∀wral 2353 dom cdm 4392 Fun wfun 4947 Fn wfn 4948 ‘cfv 4953 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-sbc 2826 df-csb 2919 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-br 3807 df-opab 3861 df-mpt 3862 df-id 4077 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-iota 4918 df-fun 4955 df-fn 4956 df-fv 4961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |