![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqimss | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss | ⊢ (A = B → A ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 2954 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
2 | 1 | simplbi 259 | 1 ⊢ (A = B → A ⊆ B) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ⊆ wss 2911 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-in 2918 df-ss 2925 |
This theorem is referenced by: eqimss2 2992 sspssr 3037 sspsstrir 3040 uneqin 3182 sssnr 3515 sssnm 3516 ssprr 3518 sstpr 3519 snsspw 3526 elpwuni 3732 disjeq2 3740 disjeq1 3743 pwne 3904 pwssunim 4012 poeq2 4028 seeq1 4061 seeq2 4062 trsucss 4126 onsucelsucr 4199 xp11m 4702 funeq 4864 fnresdm 4951 fssxp 5001 ffdm 5004 fcoi1 5013 fof 5049 dff1o2 5074 fvmptss2 5190 fvmptssdm 5198 fprg 5289 dff1o6 5359 tposeq 5803 nntri1 6013 frec2uzf1od 8873 |
Copyright terms: Public domain | W3C validator |