Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqssi GIF version

Theorem eqssi 3024
 Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
eqssi.1 𝐴𝐵
eqssi.2 𝐵𝐴
Assertion
Ref Expression
eqssi 𝐴 = 𝐵

Proof of Theorem eqssi
StepHypRef Expression
1 eqssi.1 . 2 𝐴𝐵
2 eqssi.2 . 2 𝐵𝐴
3 eqss 3023 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
41, 2, 3mpbir2an 884 1 𝐴 = 𝐵
 Colors of variables: wff set class Syntax hints:   = wceq 1285   ⊆ wss 2982 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-in 2988  df-ss 2995 This theorem is referenced by:  inv1  3296  unv  3297  undifabs  3336  intab  3685  intid  4007  find  4368  limom  4382  dmv  4599  0ima  4735  rnxpid  4805  dftpos4  5932  djuun  6558  dfuzi  8590  unirnioo  9124
 Copyright terms: Public domain W3C validator