![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
eqtr2i.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2i | ⊢ 𝐶 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2i.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtri 2102 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3 | eqcomi 2086 | 1 ⊢ 𝐶 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: 3eqtrri 2107 3eqtr2ri 2109 symdif1 3236 dfif3 3372 dfsn2 3420 prprc1 3508 ruv 4301 xpindi 4499 xpindir 4500 dmcnvcnv 4586 rncnvcnv 4587 imainrect 4796 dfrn4 4811 fcoi1 5101 foimacnv 5175 fsnunfv 5395 dfoprab3 5848 pitonnlem1 7075 ixi 7750 recexaplem2 7809 zeo 8533 num0h 8569 dec10p 8600 fseq1p1m1 9187 3lcm2e6woprm 10612 |
Copyright terms: Public domain | W3C validator |