![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcoms | GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1633 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-gen 1379 ax-ie2 1424 ax-8 1436 ax-17 1460 ax-i9 1464 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: equtr 1637 equtr2 1639 equequ2 1641 elequ1 1642 elequ2 1643 ax10o 1645 cbvalh 1678 cbvexh 1680 equvini 1683 stdpc7 1695 sbequ12r 1697 sbequ12a 1698 sbequ 1763 sb6rf 1776 sb9v 1897 sb6a 1907 mo2n 1971 cleqh 2182 cbvab 2205 reu8 2797 sbcco2 2846 snnex 4227 tfisi 4356 opeliunxp 4441 elrnmpt1 4633 rnxpid 4805 iotaval 4928 elabrex 5449 opabex3d 5799 opabex3 5800 enq0ref 6737 setindis 11029 bdsetindis 11031 |
Copyright terms: Public domain | W3C validator |