![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equsb1 | GIF version |
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equsb1 | ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb2 1691 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑦) → [𝑦 / 𝑥]𝑥 = 𝑦) | |
2 | id 19 | . 2 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
3 | 1, 2 | mpg 1381 | 1 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: → wi 4 [wsb 1686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-i9 1464 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 df-sb 1687 |
This theorem is referenced by: sbcocom 1886 elsb3 1894 elsb4 1895 pm13.183 2733 exss 3990 relelfvdm 5237 |
Copyright terms: Public domain | W3C validator |