ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvinc GIF version

Theorem eqvinc 2803
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
eqvinc.1 𝐴 ∈ V
Assertion
Ref Expression
eqvinc (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqvinc
StepHypRef Expression
1 eqvinc.1 . . . . 5 𝐴 ∈ V
21isseti 2689 . . . 4 𝑥 𝑥 = 𝐴
3 ax-1 6 . . . . . 6 (𝑥 = 𝐴 → (𝐴 = 𝐵𝑥 = 𝐴))
4 eqtr 2155 . . . . . . 7 ((𝑥 = 𝐴𝐴 = 𝐵) → 𝑥 = 𝐵)
54ex 114 . . . . . 6 (𝑥 = 𝐴 → (𝐴 = 𝐵𝑥 = 𝐵))
63, 5jca 304 . . . . 5 (𝑥 = 𝐴 → ((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)))
76eximi 1579 . . . 4 (∃𝑥 𝑥 = 𝐴 → ∃𝑥((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)))
8 pm3.43 591 . . . . 5 (((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)) → (𝐴 = 𝐵 → (𝑥 = 𝐴𝑥 = 𝐵)))
98eximi 1579 . . . 4 (∃𝑥((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)) → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴𝑥 = 𝐵)))
102, 7, 9mp2b 8 . . 3 𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴𝑥 = 𝐵))
111019.37aiv 1653 . 2 (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
12 eqtr2 2156 . . 3 ((𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵)
1312exlimiv 1577 . 2 (∃𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵)
1411, 13impbii 125 1 (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  Vcvv 2681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-v 2683
This theorem is referenced by:  eqvincf  2805
  Copyright terms: Public domain W3C validator