ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq1 GIF version

Theorem ereq1 6436
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))

Proof of Theorem ereq1
StepHypRef Expression
1 releq 4621 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
2 dmeq 4739 . . . 4 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
32eqeq1d 2148 . . 3 (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴))
4 cnveq 4713 . . . . . 6 (𝑅 = 𝑆𝑅 = 𝑆)
5 coeq1 4696 . . . . . . 7 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑅))
6 coeq2 4697 . . . . . . 7 (𝑅 = 𝑆 → (𝑆𝑅) = (𝑆𝑆))
75, 6eqtrd 2172 . . . . . 6 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑆))
84, 7uneq12d 3231 . . . . 5 (𝑅 = 𝑆 → (𝑅 ∪ (𝑅𝑅)) = (𝑆 ∪ (𝑆𝑆)))
98sseq1d 3126 . . . 4 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅))
10 sseq2 3121 . . . 4 (𝑅 = 𝑆 → ((𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
119, 10bitrd 187 . . 3 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
121, 3, 113anbi123d 1290 . 2 (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆)))
13 df-er 6429 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
14 df-er 6429 . 2 (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
1512, 13, 143bitr4g 222 1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 962   = wceq 1331  cun 3069  wss 3071  ccnv 4538  dom cdm 4539  ccom 4543  Rel wrel 4544   Er wer 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-er 6429
This theorem is referenced by:  riinerm  6502
  Copyright terms: Public domain W3C validator