![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > errel | GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6172 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 954 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∪ cun 2972 ⊆ wss 2974 ◡ccnv 4370 dom cdm 4371 ∘ ccom 4375 Rel wrel 4376 Er wer 6169 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-er 6172 |
This theorem is referenced by: ercl 6183 ersym 6184 ertr 6187 ercnv 6193 erssxp 6195 erth 6216 iinerm 6244 |
Copyright terms: Public domain | W3C validator |