Step | Hyp | Ref
| Expression |
1 | | eucialgcvga.3 |
. . . . . . 7
⊢ 𝑁 = (2nd ‘𝐴) |
2 | | xp2nd 5845 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (2nd ‘𝐴) ∈
ℕ0) |
3 | 1, 2 | syl5eqel 2169 |
. . . . . 6
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → 𝑁 ∈
ℕ0) |
4 | | eluznn0 8837 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈
(ℤ≥‘𝑁)) → 𝐾 ∈
ℕ0) |
5 | 3, 4 | sylan 277 |
. . . . 5
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈
ℕ0) |
6 | | nn0uz 8804 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
7 | | eucialg.2 |
. . . . . . 7
⊢ 𝑅 = seq0((𝐸 ∘ 1st ),
(ℕ0 × {𝐴}), (ℕ0 ×
ℕ0)) |
8 | | 0zd 8514 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → 0 ∈ ℤ) |
9 | | id 19 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → 𝐴 ∈ (ℕ0 ×
ℕ0)) |
10 | | eucalgval.1 |
. . . . . . . . 9
⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0
↦ if(𝑦 = 0,
〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
11 | 10 | eucalgf 10662 |
. . . . . . . 8
⊢ 𝐸:(ℕ0 ×
ℕ0)⟶(ℕ0 ×
ℕ0) |
12 | 11 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → 𝐸:(ℕ0 ×
ℕ0)⟶(ℕ0 ×
ℕ0)) |
13 | | nn0ex 8431 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
14 | 13, 13 | xpex 4501 |
. . . . . . . 8
⊢
(ℕ0 × ℕ0) ∈
V |
15 | 14 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (ℕ0 ×
ℕ0) ∈ V) |
16 | 6, 7, 8, 9, 12, 15 | ialgrf 10652 |
. . . . . 6
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → 𝑅:ℕ0⟶(ℕ0
× ℕ0)) |
17 | 16 | ffvelrnda 5355 |
. . . . 5
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅‘𝐾) ∈ (ℕ0 ×
ℕ0)) |
18 | 5, 17 | syldan 276 |
. . . 4
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑅‘𝐾) ∈ (ℕ0 ×
ℕ0)) |
19 | | fvres 5251 |
. . . 4
⊢ ((𝑅‘𝐾) ∈ (ℕ0 ×
ℕ0) → ((2nd ↾ (ℕ0
× ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) |
20 | 18, 19 | syl 14 |
. . 3
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd
↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) |
21 | | simpl 107 |
. . . 4
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐴 ∈ (ℕ0 ×
ℕ0)) |
22 | | fvres 5251 |
. . . . . . . 8
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → ((2nd ↾
(ℕ0 × ℕ0))‘𝐴) = (2nd ‘𝐴)) |
23 | 22, 1 | syl6eqr 2133 |
. . . . . . 7
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → ((2nd ↾
(ℕ0 × ℕ0))‘𝐴) = 𝑁) |
24 | 23 | fveq2d 5234 |
. . . . . 6
⊢ (𝐴 ∈ (ℕ0
× ℕ0) →
(ℤ≥‘((2nd ↾ (ℕ0
× ℕ0))‘𝐴)) = (ℤ≥‘𝑁)) |
25 | 24 | eleq2d 2152 |
. . . . 5
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (𝐾 ∈
(ℤ≥‘((2nd ↾ (ℕ0
× ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ≥‘𝑁))) |
26 | 25 | biimpar 291 |
. . . 4
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈
(ℤ≥‘((2nd ↾ (ℕ0
× ℕ0))‘𝐴))) |
27 | | f2ndres 5839 |
. . . . 5
⊢
(2nd ↾ (ℕ0 ×
ℕ0)):(ℕ0 ×
ℕ0)⟶ℕ0 |
28 | 10 | eucalglt 10664 |
. . . . . 6
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → ((2nd ‘(𝐸‘𝑧)) ≠ 0 → (2nd
‘(𝐸‘𝑧)) < (2nd
‘𝑧))) |
29 | 11 | ffvelrni 5354 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (𝐸‘𝑧) ∈ (ℕ0 ×
ℕ0)) |
30 | | fvres 5251 |
. . . . . . . 8
⊢ ((𝐸‘𝑧) ∈ (ℕ0 ×
ℕ0) → ((2nd ↾ (ℕ0
× ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) |
31 | 29, 30 | syl 14 |
. . . . . . 7
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → ((2nd ↾
(ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) |
32 | 31 | neeq1d 2267 |
. . . . . 6
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (((2nd ↾
(ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 ↔ (2nd
‘(𝐸‘𝑧)) ≠ 0)) |
33 | | fvres 5251 |
. . . . . . 7
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → ((2nd ↾
(ℕ0 × ℕ0))‘𝑧) = (2nd ‘𝑧)) |
34 | 31, 33 | breq12d 3818 |
. . . . . 6
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (((2nd ↾
(ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾
(ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
35 | 28, 32, 34 | 3imtr4d 201 |
. . . . 5
⊢ (𝑧 ∈ (ℕ0
× ℕ0) → (((2nd ↾
(ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 → ((2nd ↾
(ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾
(ℕ0 × ℕ0))‘𝑧))) |
36 | | eqid 2083 |
. . . . 5
⊢
((2nd ↾ (ℕ0 ×
ℕ0))‘𝐴) = ((2nd ↾
(ℕ0 × ℕ0))‘𝐴) |
37 | 11, 7, 27, 35, 36, 14 | ialgcvga 10658 |
. . . 4
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (𝐾 ∈
(ℤ≥‘((2nd ↾ (ℕ0
× ℕ0))‘𝐴)) → ((2nd ↾
(ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0)) |
38 | 21, 26, 37 | sylc 61 |
. . 3
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd
↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0) |
39 | 20, 38 | eqtr3d 2117 |
. 2
⊢ ((𝐴 ∈ (ℕ0
× ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (2nd
‘(𝑅‘𝐾)) = 0) |
40 | 39 | ex 113 |
1
⊢ (𝐴 ∈ (ℕ0
× ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd
‘(𝑅‘𝐾)) = 0)) |