ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eufnfv GIF version

Theorem eufnfv 5414
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1 𝐴 ∈ V
eufnfv.2 𝐵 ∈ V
Assertion
Ref Expression
eufnfv ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eufnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5 𝐴 ∈ V
21mptex 5412 . . . 4 (𝑥𝐴𝐵) ∈ V
3 eqeq2 2063 . . . . . 6 (𝑦 = (𝑥𝐴𝐵) → (𝑓 = 𝑦𝑓 = (𝑥𝐴𝐵)))
43bibi2d 225 . . . . 5 (𝑦 = (𝑥𝐴𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
54albidv 1719 . . . 4 (𝑦 = (𝑥𝐴𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
62, 5spcev 2662 . . 3 (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵)) → ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
7 eufnfv.2 . . . . . . 7 𝐵 ∈ V
8 eqid 2054 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
97, 8fnmpti 5052 . . . . . 6 (𝑥𝐴𝐵) Fn 𝐴
10 fneq1 5012 . . . . . 6 (𝑓 = (𝑥𝐴𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
119, 10mpbiri 161 . . . . 5 (𝑓 = (𝑥𝐴𝐵) → 𝑓 Fn 𝐴)
1211pm4.71ri 378 . . . 4 (𝑓 = (𝑥𝐴𝐵) ↔ (𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)))
13 dffn5im 5244 . . . . . . 7 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1413eqeq1d 2062 . . . . . 6 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵)))
15 funfvex 5217 . . . . . . . . 9 ((Fun 𝑓𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ V)
1615funfni 5024 . . . . . . . 8 ((𝑓 Fn 𝐴𝑥𝐴) → (𝑓𝑥) ∈ V)
1716ralrimiva 2407 . . . . . . 7 (𝑓 Fn 𝐴 → ∀𝑥𝐴 (𝑓𝑥) ∈ V)
18 mpteqb 5286 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ V → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
1917, 18syl 14 . . . . . 6 (𝑓 Fn 𝐴 → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2014, 19bitrd 181 . . . . 5 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2120pm5.32i 435 . . . 4 ((𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2212, 21bitr2i 178 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))
236, 22mpg 1354 . 2 𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦)
24 df-eu 1917 . 2 (∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
2523, 24mpbir 138 1 ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wal 1255   = wceq 1257  wex 1395  wcel 1407  ∃!weu 1914  wral 2321  Vcvv 2572  cmpt 3843   Fn wfn 4922  cfv 4927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-pow 3952  ax-pr 3969
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-id 4055  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator