ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eufnfv GIF version

Theorem eufnfv 5641
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1 𝐴 ∈ V
eufnfv.2 𝐵 ∈ V
Assertion
Ref Expression
eufnfv ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eufnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5 𝐴 ∈ V
21mptex 5639 . . . 4 (𝑥𝐴𝐵) ∈ V
3 eqeq2 2147 . . . . . 6 (𝑦 = (𝑥𝐴𝐵) → (𝑓 = 𝑦𝑓 = (𝑥𝐴𝐵)))
43bibi2d 231 . . . . 5 (𝑦 = (𝑥𝐴𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
54albidv 1796 . . . 4 (𝑦 = (𝑥𝐴𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
62, 5spcev 2775 . . 3 (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵)) → ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
7 eufnfv.2 . . . . . . 7 𝐵 ∈ V
8 eqid 2137 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
97, 8fnmpti 5246 . . . . . 6 (𝑥𝐴𝐵) Fn 𝐴
10 fneq1 5206 . . . . . 6 (𝑓 = (𝑥𝐴𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
119, 10mpbiri 167 . . . . 5 (𝑓 = (𝑥𝐴𝐵) → 𝑓 Fn 𝐴)
1211pm4.71ri 389 . . . 4 (𝑓 = (𝑥𝐴𝐵) ↔ (𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)))
13 dffn5im 5460 . . . . . . 7 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1413eqeq1d 2146 . . . . . 6 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵)))
15 funfvex 5431 . . . . . . . . 9 ((Fun 𝑓𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ V)
1615funfni 5218 . . . . . . . 8 ((𝑓 Fn 𝐴𝑥𝐴) → (𝑓𝑥) ∈ V)
1716ralrimiva 2503 . . . . . . 7 (𝑓 Fn 𝐴 → ∀𝑥𝐴 (𝑓𝑥) ∈ V)
18 mpteqb 5504 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ V → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
1917, 18syl 14 . . . . . 6 (𝑓 Fn 𝐴 → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2014, 19bitrd 187 . . . . 5 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2120pm5.32i 449 . . . 4 ((𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2212, 21bitr2i 184 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))
236, 22mpg 1427 . 2 𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦)
24 df-eu 2000 . 2 (∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
2523, 24mpbir 145 1 ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480  ∃!weu 1997  wral 2414  Vcvv 2681  cmpt 3984   Fn wfn 5113  cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator