ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euim GIF version

Theorem euim 1984
Description: Add existential uniqueness quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
euim ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))

Proof of Theorem euim
StepHypRef Expression
1 ax-1 5 . . 3 (∃𝑥𝜑 → (∃!𝑥𝜓 → ∃𝑥𝜑))
2 euimmo 1983 . . 3 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))
31, 2anim12ii 329 . 2 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)))
4 eu5 1963 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
53, 4syl6ibr 155 1 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wal 1257  wex 1397  ∃!weu 1916  ∃*wmo 1917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator