ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusn GIF version

Theorem eusn 3471
Description: Two ways to express "𝐴 is a singleton." (Contributed by NM, 30-Oct-2010.)
Assertion
Ref Expression
eusn (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem eusn
StepHypRef Expression
1 euabsn 3467 . 2 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥{𝑥𝑥𝐴} = {𝑥})
2 abid2 2174 . . . 4 {𝑥𝑥𝐴} = 𝐴
32eqeq1i 2063 . . 3 ({𝑥𝑥𝐴} = {𝑥} ↔ 𝐴 = {𝑥})
43exbii 1512 . 2 (∃𝑥{𝑥𝑥𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})
51, 4bitri 177 1 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wb 102   = wceq 1259  wex 1397  wcel 1409  ∃!weu 1916  {cab 2042  {csn 3402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sn 3408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator