ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv1 GIF version

Theorem eusv1 4343
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sp 1473 . . . 4 (∀𝑥 𝑦 = 𝐴𝑦 = 𝐴)
2 sp 1473 . . . 4 (∀𝑥 𝑧 = 𝐴𝑧 = 𝐴)
3 eqtr3 2137 . . . 4 ((𝑦 = 𝐴𝑧 = 𝐴) → 𝑦 = 𝑧)
41, 2, 3syl2an 287 . . 3 ((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
54gen2 1411 . 2 𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
6 eqeq1 2124 . . . 4 (𝑦 = 𝑧 → (𝑦 = 𝐴𝑧 = 𝐴))
76albidv 1780 . . 3 (𝑦 = 𝑧 → (∀𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑧 = 𝐴))
87eu4 2039 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (∃𝑦𝑥 𝑦 = 𝐴 ∧ ∀𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)))
95, 8mpbiran2 910 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1314   = wceq 1316  wex 1453  ∃!weu 1977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-cleq 2110
This theorem is referenced by:  eusvnfb  4345
  Copyright terms: Public domain W3C validator