![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eusv1 | GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) |
Ref | Expression |
---|---|
eusv1 | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1442 | . . . 4 ⊢ (∀𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴) | |
2 | sp 1442 | . . . 4 ⊢ (∀𝑥 𝑧 = 𝐴 → 𝑧 = 𝐴) | |
3 | eqtr3 2101 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → 𝑦 = 𝑧) | |
4 | 1, 2, 3 | syl2an 283 | . . 3 ⊢ ((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧) |
5 | 4 | gen2 1380 | . 2 ⊢ ∀𝑦∀𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧) |
6 | eqeq1 2088 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝐴 ↔ 𝑧 = 𝐴)) | |
7 | 6 | albidv 1746 | . . 3 ⊢ (𝑦 = 𝑧 → (∀𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑧 = 𝐴)) |
8 | 7 | eu4 2004 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (∃𝑦∀𝑥 𝑦 = 𝐴 ∧ ∀𝑦∀𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧))) |
9 | 5, 8 | mpbiran2 883 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1283 = wceq 1285 ∃wex 1422 ∃!weu 1942 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-cleq 2075 |
This theorem is referenced by: eusvnfb 4212 |
Copyright terms: Public domain | W3C validator |