Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  evenelz GIF version

Theorem evenelz 10474
 Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 10408. (Contributed by AV, 22-Jun-2021.)
Assertion
Ref Expression
evenelz (2 ∥ 𝑁𝑁 ∈ ℤ)

Proof of Theorem evenelz
StepHypRef Expression
1 dvdszrcl 10408 . 2 (2 ∥ 𝑁 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
21simprd 112 1 (2 ∥ 𝑁𝑁 ∈ ℤ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1434   class class class wbr 3805  2c2 8208  ℤcz 8484   ∥ cdvds 10403 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-xp 4397  df-dvds 10404 This theorem is referenced by:  even2n  10481
 Copyright terms: Public domain W3C validator