![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximdh | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
Ref | Expression |
---|---|
eximdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
eximdh.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximdh | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | eximdh.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alrimih 1399 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
4 | exim 1531 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∃𝑥𝜓 → ∃𝑥𝜒)) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1283 ∃wex 1422 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: eximd 1544 19.41h 1616 hbexd 1625 equsex 1657 equsexd 1658 spimeh 1668 sbiedh 1711 exdistrfor 1722 eximdv 1802 cbvexdh 1843 mopick2 2025 2euex 2029 bj-sbimedh 10733 |
Copyright terms: Public domain | W3C validator |