![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1453 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | exlimih 1525 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1390 ∃wex 1422 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-gen 1379 ax-ie2 1424 ax-4 1441 |
This theorem depends on definitions: df-bi 115 df-nf 1391 |
This theorem is referenced by: 19.36i 1603 euexex 2027 ceqsex 2638 sbhypf 2649 vtoclgf 2658 vtoclef 2672 copsexg 4007 copsex2g 4009 ralxpf 4510 rexxpf 4511 dmcoss 4629 fv3 5229 tz6.12c 5235 0neqopab 5581 cnvoprab 5886 bj-exlimmpi 10732 |
Copyright terms: Public domain | W3C validator |