ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomni GIF version

Theorem exmidomni 7007
Description: Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidomni (EXMID ↔ ∀𝑥 𝑥 ∈ Omni)

Proof of Theorem exmidomni
Dummy variables 𝑢 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidomniim 7006 . 2 (EXMID → ∀𝑥 𝑥 ∈ Omni)
2 vex 2684 . . . . . . . . . 10 𝑢 ∈ V
3 eleq1w 2198 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥 ∈ Omni ↔ 𝑢 ∈ Omni))
42, 3spcv 2774 . . . . . . . . 9 (∀𝑥 𝑥 ∈ Omni → 𝑢 ∈ Omni)
5 xpeq1 4548 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥 × {∅}) = (𝑢 × {∅}))
65fveq1d 5416 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → ((𝑥 × {∅})‘𝑦) = ((𝑢 × {∅})‘𝑦))
76eqeq1d 2146 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (((𝑥 × {∅})‘𝑦) = ∅ ↔ ((𝑢 × {∅})‘𝑦) = ∅))
87rexeqbi1dv 2633 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ↔ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅))
96eqeq1d 2146 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (((𝑥 × {∅})‘𝑦) = 1o ↔ ((𝑢 × {∅})‘𝑦) = 1o))
109raleqbi1dv 2632 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o ↔ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
118, 10orbi12d 782 . . . . . . . . . 10 (𝑥 = 𝑢 → ((∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o) ↔ (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)))
12 vex 2684 . . . . . . . . . . . . 13 𝑥 ∈ V
13 isomni 7001 . . . . . . . . . . . . 13 (𝑥 ∈ V → (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))))
1412, 13ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
1514biimpi 119 . . . . . . . . . . 11 (𝑥 ∈ Omni → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
16 0ex 4050 . . . . . . . . . . . . . 14 ∅ ∈ V
1716prid1 3624 . . . . . . . . . . . . 13 ∅ ∈ {∅, 1o}
18 df2o3 6320 . . . . . . . . . . . . 13 2o = {∅, 1o}
1917, 18eleqtrri 2213 . . . . . . . . . . . 12 ∅ ∈ 2o
2019fconst6 5317 . . . . . . . . . . 11 (𝑥 × {∅}):𝑥⟶2o
21 p0ex 4107 . . . . . . . . . . . . 13 {∅} ∈ V
2212, 21xpex 4649 . . . . . . . . . . . 12 (𝑥 × {∅}) ∈ V
23 feq1 5250 . . . . . . . . . . . . 13 (𝑓 = (𝑥 × {∅}) → (𝑓:𝑥⟶2o ↔ (𝑥 × {∅}):𝑥⟶2o))
24 fveq1 5413 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 × {∅}) → (𝑓𝑦) = ((𝑥 × {∅})‘𝑦))
2524eqeq1d 2146 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 × {∅}) → ((𝑓𝑦) = ∅ ↔ ((𝑥 × {∅})‘𝑦) = ∅))
2625rexbidv 2436 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 × {∅}) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅))
2724eqeq1d 2146 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 × {∅}) → ((𝑓𝑦) = 1o ↔ ((𝑥 × {∅})‘𝑦) = 1o))
2827ralbidv 2435 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 × {∅}) → (∀𝑦𝑥 (𝑓𝑦) = 1o ↔ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))
2926, 28orbi12d 782 . . . . . . . . . . . . 13 (𝑓 = (𝑥 × {∅}) → ((∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o) ↔ (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o)))
3023, 29imbi12d 233 . . . . . . . . . . . 12 (𝑓 = (𝑥 × {∅}) → ((𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)) ↔ ((𝑥 × {∅}):𝑥⟶2o → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))))
3122, 30spcv 2774 . . . . . . . . . . 11 (∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)) → ((𝑥 × {∅}):𝑥⟶2o → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o)))
3215, 20, 31mpisyl 1422 . . . . . . . . . 10 (𝑥 ∈ Omni → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))
3311, 32vtoclga 2747 . . . . . . . . 9 (𝑢 ∈ Omni → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
344, 33syl 14 . . . . . . . 8 (∀𝑥 𝑥 ∈ Omni → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
3534adantr 274 . . . . . . 7 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
36 simplr 519 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → 𝑢 ⊆ {∅})
37 rexm 3457 . . . . . . . . . . . 12 (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → ∃𝑦 𝑦𝑢)
38 sssnm 3676 . . . . . . . . . . . 12 (∃𝑦 𝑦𝑢 → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
3937, 38syl 14 . . . . . . . . . . 11 (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
4039adantl 275 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
4136, 40mpbid 146 . . . . . . . . 9 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → 𝑢 = {∅})
4241ex 114 . . . . . . . 8 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → 𝑢 = {∅}))
43 nfv 1508 . . . . . . . . . . . 12 𝑦(∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅})
44 nfra1 2464 . . . . . . . . . . . 12 𝑦𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o
4543, 44nfan 1544 . . . . . . . . . . 11 𝑦((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)
46 nfcv 2279 . . . . . . . . . . 11 𝑦𝑢
47 nfcv 2279 . . . . . . . . . . 11 𝑦
48 1n0 6322 . . . . . . . . . . . . . 14 1o ≠ ∅
4948neii 2308 . . . . . . . . . . . . 13 ¬ 1o = ∅
50 simpr 109 . . . . . . . . . . . . . . . 16 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)
5150r19.21bi 2518 . . . . . . . . . . . . . . 15 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → ((𝑢 × {∅})‘𝑦) = 1o)
5216fvconst2 5629 . . . . . . . . . . . . . . . 16 (𝑦𝑢 → ((𝑢 × {∅})‘𝑦) = ∅)
5352adantl 275 . . . . . . . . . . . . . . 15 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → ((𝑢 × {∅})‘𝑦) = ∅)
5451, 53eqtr3d 2172 . . . . . . . . . . . . . 14 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → 1o = ∅)
5554ex 114 . . . . . . . . . . . . 13 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑦𝑢 → 1o = ∅))
5649, 55mtoi 653 . . . . . . . . . . . 12 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → ¬ 𝑦𝑢)
5756pm2.21d 608 . . . . . . . . . . 11 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑦𝑢𝑦 ∈ ∅))
5845, 46, 47, 57ssrd 3097 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → 𝑢 ⊆ ∅)
59 ss0 3398 . . . . . . . . . 10 (𝑢 ⊆ ∅ → 𝑢 = ∅)
6058, 59syl 14 . . . . . . . . 9 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → 𝑢 = ∅)
6160ex 114 . . . . . . . 8 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o𝑢 = ∅))
6242, 61orim12d 775 . . . . . . 7 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → ((∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑢 = {∅} ∨ 𝑢 = ∅)))
6335, 62mpd 13 . . . . . 6 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (𝑢 = {∅} ∨ 𝑢 = ∅))
6463orcomd 718 . . . . 5 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (𝑢 = ∅ ∨ 𝑢 = {∅}))
6564ex 114 . . . 4 (∀𝑥 𝑥 ∈ Omni → (𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
6665alrimiv 1846 . . 3 (∀𝑥 𝑥 ∈ Omni → ∀𝑢(𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
67 exmid01 4116 . . 3 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
6866, 67sylibr 133 . 2 (∀𝑥 𝑥 ∈ Omni → EXMID)
691, 68impbii 125 1 (EXMID ↔ ∀𝑥 𝑥 ∈ Omni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  wal 1329   = wceq 1331  wex 1468  wcel 1480  wral 2414  wrex 2415  Vcvv 2681  wss 3066  c0 3358  {csn 3522  {cpr 3523  EXMIDwem 4113   × cxp 4532  wf 5114  cfv 5118  1oc1o 6299  2oc2o 6300  Omnicomni 6997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-exmid 4114  df-id 4210  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-1o 6306  df-2o 6307  df-omni 6999
This theorem is referenced by:  exmidlpo  7008
  Copyright terms: Public domain W3C validator