ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp43 GIF version

Theorem exp43 358
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp43.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
exp43 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp43
StepHypRef Expression
1 exp43.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21ex 112 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32exp4b 353 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  exp53  363  funssres  4970  fvopab3ig  5274  fvmptt  5290  tfri3  5984  nnmordi  6120  ordiso2  6415  qaddcl  8667  qmulcl  8669  bernneq  9537
  Copyright terms: Public domain W3C validator