ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expadd GIF version

Theorem expadd 10303
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expadd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5750 . . . . . . 7 (𝑗 = 0 → (𝑀 + 𝑗) = (𝑀 + 0))
21oveq2d 5758 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 0)))
3 oveq2 5750 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
43oveq2d 5758 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑0)))
52, 4eqeq12d 2132 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0))))
65imbi2d 229 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))))
7 oveq2 5750 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 + 𝑗) = (𝑀 + 𝑘))
87oveq2d 5758 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑘)))
9 oveq2 5750 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
109oveq2d 5758 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑘)))
118, 10eqeq12d 2132 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))))
1211imbi2d 229 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)))))
13 oveq2 5750 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 + 𝑗) = (𝑀 + (𝑘 + 1)))
1413oveq2d 5758 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + (𝑘 + 1))))
15 oveq2 5750 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1615oveq2d 5758 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))
1714, 16eqeq12d 2132 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
1817imbi2d 229 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
19 oveq2 5750 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 + 𝑗) = (𝑀 + 𝑁))
2019oveq2d 5758 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑁)))
21 oveq2 5750 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
2221oveq2d 5758 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑁)))
2320, 22eqeq12d 2132 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
2423imbi2d 229 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
25 nn0cn 8955 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2625addid1d 7879 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
2726adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
2827oveq2d 5758 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = (𝐴𝑀))
29 expcl 10279 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
3029mulid1d 7751 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · 1) = (𝐴𝑀))
3128, 30eqtr4d 2153 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · 1))
32 exp0 10265 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3332adantr 274 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑0) = 1)
3433oveq2d 5758 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑0)) = ((𝐴𝑀) · 1))
3531, 34eqtr4d 2153 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))
36 oveq1 5749 . . . . . . 7 ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
37 nn0cn 8955 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
38 ax-1cn 7681 . . . . . . . . . . . . 13 1 ∈ ℂ
39 addass 7718 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4038, 39mp3an3 1289 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4125, 37, 40syl2an 287 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4241adantll 467 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4342oveq2d 5758 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = (𝐴↑(𝑀 + (𝑘 + 1))))
44 simpll 503 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
45 nn0addcl 8980 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
4645adantll 467 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
47 expp1 10268 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑘) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4844, 46, 47syl2anc 408 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4943, 48eqtr3d 2152 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
50 expp1 10268 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5150adantlr 468 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq2d 5758 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5329adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
54 expcl 10279 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5554adantlr 468 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5653, 55, 44mulassd 7757 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑀) · (𝐴𝑘)) · 𝐴) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5752, 56eqtr4d 2153 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
5849, 57eqeq12d 2132 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) ↔ ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴)))
5936, 58syl5ibr 155 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
6059expcom 115 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
6160a2d 26 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
626, 12, 18, 24, 35, 61nn0ind 9133 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
6362expdcom 1403 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
64633imp 1160 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 947   = wceq 1316  wcel 1465  (class class class)co 5742  cc 7586  0cc0 7588  1c1 7589   + caddc 7591   · cmul 7593  0cn0 8945  cexp 10260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-seqfrec 10187  df-exp 10261
This theorem is referenced by:  expaddzaplem  10304  expaddzap  10305  expmul  10306  i4  10363  expaddd  10394  ef01bndlem  11390
  Copyright terms: Public domain W3C validator