ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcllem GIF version

Theorem expcllem 9425
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
Assertion
Ref Expression
expcllem ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcllem
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8240 . 2 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
2 oveq2 5547 . . . . . . 7 (𝑧 = 1 → (𝐴𝑧) = (𝐴↑1))
32eleq1d 2122 . . . . . 6 (𝑧 = 1 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹))
43imbi2d 223 . . . . 5 (𝑧 = 1 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)))
5 oveq2 5547 . . . . . . 7 (𝑧 = 𝑤 → (𝐴𝑧) = (𝐴𝑤))
65eleq1d 2122 . . . . . 6 (𝑧 = 𝑤 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝑤) ∈ 𝐹))
76imbi2d 223 . . . . 5 (𝑧 = 𝑤 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝑤) ∈ 𝐹)))
8 oveq2 5547 . . . . . . 7 (𝑧 = (𝑤 + 1) → (𝐴𝑧) = (𝐴↑(𝑤 + 1)))
98eleq1d 2122 . . . . . 6 (𝑧 = (𝑤 + 1) → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹))
109imbi2d 223 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
11 oveq2 5547 . . . . . . 7 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1211eleq1d 2122 . . . . . 6 (𝑧 = 𝐵 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝐵) ∈ 𝐹))
1312imbi2d 223 . . . . 5 (𝑧 = 𝐵 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹)))
14 expcllem.1 . . . . . . . . 9 𝐹 ⊆ ℂ
1514sseli 2968 . . . . . . . 8 (𝐴𝐹𝐴 ∈ ℂ)
16 exp1 9420 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1715, 16syl 14 . . . . . . 7 (𝐴𝐹 → (𝐴↑1) = 𝐴)
1817eleq1d 2122 . . . . . 6 (𝐴𝐹 → ((𝐴↑1) ∈ 𝐹𝐴𝐹))
1918ibir 170 . . . . 5 (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)
20 expcllem.2 . . . . . . . . . . . 12 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
2120caovcl 5682 . . . . . . . . . . 11 (((𝐴𝑤) ∈ 𝐹𝐴𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2221ancoms 259 . . . . . . . . . 10 ((𝐴𝐹 ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2322adantlr 454 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
24 nnnn0 8245 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0)
25 expp1 9421 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2615, 24, 25syl2an 277 . . . . . . . . . . 11 ((𝐴𝐹𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2726eleq1d 2122 . . . . . . . . . 10 ((𝐴𝐹𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2827adantr 265 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2923, 28mpbird 160 . . . . . . . 8 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹)
3029exp31 350 . . . . . . 7 (𝐴𝐹 → (𝑤 ∈ ℕ → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3130com12 30 . . . . . 6 (𝑤 ∈ ℕ → (𝐴𝐹 → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3231a2d 26 . . . . 5 (𝑤 ∈ ℕ → ((𝐴𝐹 → (𝐴𝑤) ∈ 𝐹) → (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
334, 7, 10, 13, 19, 32nnind 8005 . . . 4 (𝐵 ∈ ℕ → (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹))
3433impcom 120 . . 3 ((𝐴𝐹𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹)
35 oveq2 5547 . . . . 5 (𝐵 = 0 → (𝐴𝐵) = (𝐴↑0))
36 exp0 9418 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3715, 36syl 14 . . . . 5 (𝐴𝐹 → (𝐴↑0) = 1)
3835, 37sylan9eqr 2110 . . . 4 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) = 1)
39 expcllem.3 . . . 4 1 ∈ 𝐹
4038, 39syl6eqel 2144 . . 3 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) ∈ 𝐹)
4134, 40jaodan 721 . 2 ((𝐴𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴𝐵) ∈ 𝐹)
421, 41sylan2b 275 1 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639   = wceq 1259  wcel 1409  wss 2944  (class class class)co 5539  cc 6944  0cc0 6946  1c1 6947   + caddc 6949   · cmul 6951  cn 7989  0cn0 8238  cexp 9413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-n0 8239  df-z 8302  df-uz 8569  df-iseq 9370  df-iexp 9414
This theorem is referenced by:  expcl2lemap  9426  nnexpcl  9427  nn0expcl  9428  zexpcl  9429  qexpcl  9430  reexpcl  9431  expcl  9432  expge0  9450  expge1  9451
  Copyright terms: Public domain W3C validator