ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcllem GIF version

Theorem expcllem 9636
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
Assertion
Ref Expression
expcllem ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcllem
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8409 . 2 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
2 oveq2 5571 . . . . . . 7 (𝑧 = 1 → (𝐴𝑧) = (𝐴↑1))
32eleq1d 2151 . . . . . 6 (𝑧 = 1 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹))
43imbi2d 228 . . . . 5 (𝑧 = 1 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)))
5 oveq2 5571 . . . . . . 7 (𝑧 = 𝑤 → (𝐴𝑧) = (𝐴𝑤))
65eleq1d 2151 . . . . . 6 (𝑧 = 𝑤 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝑤) ∈ 𝐹))
76imbi2d 228 . . . . 5 (𝑧 = 𝑤 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝑤) ∈ 𝐹)))
8 oveq2 5571 . . . . . . 7 (𝑧 = (𝑤 + 1) → (𝐴𝑧) = (𝐴↑(𝑤 + 1)))
98eleq1d 2151 . . . . . 6 (𝑧 = (𝑤 + 1) → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹))
109imbi2d 228 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
11 oveq2 5571 . . . . . . 7 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1211eleq1d 2151 . . . . . 6 (𝑧 = 𝐵 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝐵) ∈ 𝐹))
1312imbi2d 228 . . . . 5 (𝑧 = 𝐵 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹)))
14 expcllem.1 . . . . . . . . 9 𝐹 ⊆ ℂ
1514sseli 3004 . . . . . . . 8 (𝐴𝐹𝐴 ∈ ℂ)
16 exp1 9631 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1715, 16syl 14 . . . . . . 7 (𝐴𝐹 → (𝐴↑1) = 𝐴)
1817eleq1d 2151 . . . . . 6 (𝐴𝐹 → ((𝐴↑1) ∈ 𝐹𝐴𝐹))
1918ibir 175 . . . . 5 (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)
20 expcllem.2 . . . . . . . . . . . 12 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
2120caovcl 5706 . . . . . . . . . . 11 (((𝐴𝑤) ∈ 𝐹𝐴𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2221ancoms 264 . . . . . . . . . 10 ((𝐴𝐹 ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2322adantlr 461 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
24 nnnn0 8414 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0)
25 expp1 9632 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2615, 24, 25syl2an 283 . . . . . . . . . . 11 ((𝐴𝐹𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2726eleq1d 2151 . . . . . . . . . 10 ((𝐴𝐹𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2827adantr 270 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2923, 28mpbird 165 . . . . . . . 8 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹)
3029exp31 356 . . . . . . 7 (𝐴𝐹 → (𝑤 ∈ ℕ → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3130com12 30 . . . . . 6 (𝑤 ∈ ℕ → (𝐴𝐹 → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3231a2d 26 . . . . 5 (𝑤 ∈ ℕ → ((𝐴𝐹 → (𝐴𝑤) ∈ 𝐹) → (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
334, 7, 10, 13, 19, 32nnind 8174 . . . 4 (𝐵 ∈ ℕ → (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹))
3433impcom 123 . . 3 ((𝐴𝐹𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹)
35 oveq2 5571 . . . . 5 (𝐵 = 0 → (𝐴𝐵) = (𝐴↑0))
36 exp0 9629 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3715, 36syl 14 . . . . 5 (𝐴𝐹 → (𝐴↑0) = 1)
3835, 37sylan9eqr 2137 . . . 4 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) = 1)
39 expcllem.3 . . . 4 1 ∈ 𝐹
4038, 39syl6eqel 2173 . . 3 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) ∈ 𝐹)
4134, 40jaodan 744 . 2 ((𝐴𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴𝐵) ∈ 𝐹)
421, 41sylan2b 281 1 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  wss 2982  (class class class)co 5563  cc 7093  0cc0 7095  1c1 7096   + caddc 7098   · cmul 7100  cn 8158  0cn0 8407  cexp 9624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-iseq 9574  df-iexp 9625
This theorem is referenced by:  expcl2lemap  9637  nnexpcl  9638  nn0expcl  9639  zexpcl  9640  qexpcl  9641  reexpcl  9642  expcl  9643  expge0  9661  expge1  9662
  Copyright terms: Public domain W3C validator