ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expi GIF version

Theorem expi 577
Description: An exportation inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
expi.1 (¬ (𝜑 → ¬ 𝜓) → 𝜒)
Assertion
Ref Expression
expi (𝜑 → (𝜓𝜒))

Proof of Theorem expi
StepHypRef Expression
1 pm3.2im 576 . 2 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
2 expi.1 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜒)
31, 2syl6 33 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in1 554  ax-in2 555
This theorem is referenced by:  bj-nn0suc0  10448
  Copyright terms: Public domain W3C validator