ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmul GIF version

Theorem expmul 9670
Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Proof of Theorem expmul
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5571 . . . . . . 7 (𝑗 = 0 → (𝑀 · 𝑗) = (𝑀 · 0))
21oveq2d 5579 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 0)))
3 oveq2 5571 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑0))
42, 3eqeq12d 2097 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0)))
54imbi2d 228 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))))
6 oveq2 5571 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 · 𝑗) = (𝑀 · 𝑘))
76oveq2d 5579 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑘)))
8 oveq2 5571 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑘))
97, 8eqeq12d 2097 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)))
109imbi2d 228 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘))))
11 oveq2 5571 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 · 𝑗) = (𝑀 · (𝑘 + 1)))
1211oveq2d 5579 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · (𝑘 + 1))))
13 oveq2 5571 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑(𝑘 + 1)))
1412, 13eqeq12d 2097 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
1514imbi2d 228 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
16 oveq2 5571 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 · 𝑗) = (𝑀 · 𝑁))
1716oveq2d 5579 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑁)))
18 oveq2 5571 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑁))
1917, 18eqeq12d 2097 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
2019imbi2d 228 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
21 nn0cn 8417 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2221mul01d 7616 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 · 0) = 0)
2322oveq2d 5579 . . . . . 6 (𝑀 ∈ ℕ0 → (𝐴↑(𝑀 · 0)) = (𝐴↑0))
24 exp0 9629 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24sylan9eqr 2137 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = 1)
26 expcl 9643 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
27 exp0 9629 . . . . . 6 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀)↑0) = 1)
2826, 27syl 14 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀)↑0) = 1)
2925, 28eqtr4d 2118 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))
30 oveq1 5570 . . . . . . 7 ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
31 nn0cn 8417 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
32 ax-1cn 7183 . . . . . . . . . . . . . 14 1 ∈ ℂ
33 adddi 7219 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
3432, 33mp3an3 1258 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
35 mulid1 7230 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℂ → (𝑀 · 1) = 𝑀)
3635adantr 270 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · 1) = 𝑀)
3736oveq2d 5579 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) + (𝑀 · 1)) = ((𝑀 · 𝑘) + 𝑀))
3834, 37eqtrd 2115 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
3921, 31, 38syl2an 283 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4039adantll 460 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4140oveq2d 5579 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = (𝐴↑((𝑀 · 𝑘) + 𝑀)))
42 simpll 496 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 nn0mulcl 8443 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
4443adantll 460 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
45 simplr 497 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
46 expadd 9667 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑘) ∈ ℕ0𝑀 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4742, 44, 45, 46syl3anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4841, 47eqtrd 2115 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
49 expp1 9632 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5026, 49sylan 277 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5148, 50eqeq12d 2097 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)) ↔ ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀))))
5230, 51syl5ibr 154 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
5352expcom 114 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
5453a2d 26 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
555, 10, 15, 20, 29, 54nn0ind 8594 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
5655expdcom 1372 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
57563imp 1133 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  (class class class)co 5563  cc 7093  0cc0 7095  1c1 7096   + caddc 7098   · cmul 7100  0cn0 8407  cexp 9624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-iseq 9574  df-iexp 9625
This theorem is referenced by:  expmulzap  9671  expnass  9729  expmuld  9757
  Copyright terms: Public domain W3C validator