Proof of Theorem expnegap0
Step | Hyp | Ref
| Expression |
1 | | elnn0 7959 |
. . 3
⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ
∨ 𝑁 = 0)) |
2 | | nnne0 7723 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
3 | 2 | adantl 262 |
. . . . . . . . 9
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
4 | | nncn 7703 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
5 | 4 | adantl 262 |
. . . . . . . . . . 11
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℂ) |
6 | 5 | negeq0d 7110 |
. . . . . . . . . 10
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0)) |
7 | 6 | necon3abid 2238 |
. . . . . . . . 9
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0)) |
8 | 3, 7 | mpbid 135 |
. . . . . . . 8
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ -𝑁 = 0) |
9 | 8 | iffalsed 3335 |
. . . . . . 7
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁)))) |
10 | | nnnn0 7964 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
11 | 10 | adantl 262 |
. . . . . . . . . 10
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
12 | | nn0nlt0 7984 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0 → ¬ 𝑁 < 0) |
13 | 11, 12 | syl 14 |
. . . . . . . . 9
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0) |
14 | 11 | nn0red 8012 |
. . . . . . . . . 10
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℝ) |
15 | 14 | lt0neg1d 7302 |
. . . . . . . . 9
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁)) |
16 | 13, 15 | mtbid 596 |
. . . . . . . 8
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0 < -𝑁) |
17 | 16 | iffalsed 3335 |
. . . . . . 7
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁))) = (1 / (seq1( · , (ℕ
× {A}), ℂ)‘--𝑁))) |
18 | 5 | negnegd 7109 |
. . . . . . . . 9
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
19 | 18 | fveq2d 5125 |
. . . . . . . 8
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ
× {A}), ℂ)‘--𝑁) = (seq1( · , (ℕ
× {A}), ℂ)‘𝑁)) |
20 | 19 | oveq2d 5471 |
. . . . . . 7
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (seq1( · , (ℕ
× {A}), ℂ)‘--𝑁)) = (1 / (seq1( · ,
(ℕ × {A}), ℂ)‘𝑁))) |
21 | 9, 17, 20 | 3eqtrd 2073 |
. . . . . 6
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁)))) = (1 / (seq1( · , (ℕ
× {A}), ℂ)‘𝑁))) |
22 | 21 | adantlr 446 |
. . . . 5
⊢
(((A ∈ ℂ ∧
A # 0) ∧
𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁)))) = (1 / (seq1( · , (ℕ
× {A}), ℂ)‘𝑁))) |
23 | | simp1 903 |
. . . . . . 7
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ) → A ∈
ℂ) |
24 | | simp3 905 |
. . . . . . . . 9
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ) → 𝑁 ∈
ℕ) |
25 | 24 | nnzd 8135 |
. . . . . . . 8
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ) → 𝑁 ∈
ℤ) |
26 | 25 | znegcld 8138 |
. . . . . . 7
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ) → -𝑁 ∈
ℤ) |
27 | | simp2 904 |
. . . . . . . 8
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ) → A # 0) |
28 | 27 | orcd 651 |
. . . . . . 7
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ) → (A # 0 ∨ 0 ≤
-𝑁)) |
29 | | expival 8911 |
. . . . . . 7
⊢
((A ∈ ℂ ∧ -𝑁 ∈ ℤ ∧
(A # 0 ∨ 0
≤ -𝑁)) → (A↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁))))) |
30 | 23, 26, 28, 29 | syl3anc 1134 |
. . . . . 6
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ) → (A↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁))))) |
31 | 30 | 3expa 1103 |
. . . . 5
⊢
(((A ∈ ℂ ∧
A # 0) ∧
𝑁 ∈ ℕ) → (A↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ ×
{A}), ℂ)‘-𝑁), (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘--𝑁))))) |
32 | | expinnval 8912 |
. . . . . . 7
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → (A↑𝑁) = (seq1( · , (ℕ ×
{A}), ℂ)‘𝑁)) |
33 | 32 | oveq2d 5471 |
. . . . . 6
⊢
((A ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (A↑𝑁)) = (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘𝑁))) |
34 | 33 | adantlr 446 |
. . . . 5
⊢
(((A ∈ ℂ ∧
A # 0) ∧
𝑁 ∈ ℕ) → (1 / (A↑𝑁)) = (1 / (seq1( · , (ℕ ×
{A}), ℂ)‘𝑁))) |
35 | 22, 31, 34 | 3eqtr4d 2079 |
. . . 4
⊢
(((A ∈ ℂ ∧
A # 0) ∧
𝑁 ∈ ℕ) → (A↑-𝑁) = (1 / (A↑𝑁))) |
36 | | 1div1e1 7463 |
. . . . . . 7
⊢ (1 / 1) =
1 |
37 | 36 | eqcomi 2041 |
. . . . . 6
⊢ 1 = (1 /
1) |
38 | | negeq 7001 |
. . . . . . . . 9
⊢ (𝑁 = 0 → -𝑁 = -0) |
39 | | neg0 7053 |
. . . . . . . . 9
⊢ -0 =
0 |
40 | 38, 39 | syl6eq 2085 |
. . . . . . . 8
⊢ (𝑁 = 0 → -𝑁 = 0) |
41 | 40 | oveq2d 5471 |
. . . . . . 7
⊢ (𝑁 = 0 → (A↑-𝑁) = (A↑0)) |
42 | | exp0 8913 |
. . . . . . 7
⊢ (A ∈ ℂ →
(A↑0) = 1) |
43 | 41, 42 | sylan9eqr 2091 |
. . . . . 6
⊢
((A ∈ ℂ ∧ 𝑁 = 0) → (A↑-𝑁) = 1) |
44 | | oveq2 5463 |
. . . . . . . 8
⊢ (𝑁 = 0 → (A↑𝑁) = (A↑0)) |
45 | 44, 42 | sylan9eqr 2091 |
. . . . . . 7
⊢
((A ∈ ℂ ∧ 𝑁 = 0) → (A↑𝑁) = 1) |
46 | 45 | oveq2d 5471 |
. . . . . 6
⊢
((A ∈ ℂ ∧ 𝑁 = 0) → (1 / (A↑𝑁)) = (1 / 1)) |
47 | 37, 43, 46 | 3eqtr4a 2095 |
. . . . 5
⊢
((A ∈ ℂ ∧ 𝑁 = 0) → (A↑-𝑁) = (1 / (A↑𝑁))) |
48 | 47 | adantlr 446 |
. . . 4
⊢
(((A ∈ ℂ ∧
A # 0) ∧
𝑁 = 0) → (A↑-𝑁) = (1 / (A↑𝑁))) |
49 | 35, 48 | jaodan 709 |
. . 3
⊢
(((A ∈ ℂ ∧
A # 0) ∧
(𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (A↑-𝑁) = (1 / (A↑𝑁))) |
50 | 1, 49 | sylan2b 271 |
. 2
⊢
(((A ∈ ℂ ∧
A # 0) ∧
𝑁 ∈ ℕ0) → (A↑-𝑁) = (1 / (A↑𝑁))) |
51 | 50 | 3impa 1098 |
1
⊢
((A ∈ ℂ ∧
A # 0 ∧
𝑁 ∈ ℕ0) → (A↑-𝑁) = (1 / (A↑𝑁))) |