ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd2 GIF version

Theorem expnlbnd2 10410
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 10409 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴)
2 simpl2 985 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ)
3 simpl3 986 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 < 𝐵)
4 1re 7758 . . . . . . . . . 10 1 ∈ ℝ
5 ltle 7844 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → 1 ≤ 𝐵))
64, 2, 5sylancr 410 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 < 𝐵 → 1 ≤ 𝐵))
73, 6mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ≤ 𝐵)
8 simprr 521 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
9 leexp2a 10339 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝑘 ∈ (ℤ𝑗)) → (𝐵𝑗) ≤ (𝐵𝑘))
102, 7, 8, 9syl3anc 1216 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ≤ (𝐵𝑘))
11 0red 7760 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
12 1red 7774 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ∈ ℝ)
13 0lt1 7882 . . . . . . . . . . . 12 0 < 1
1413a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 1)
1511, 12, 2, 14, 3lttrd 7881 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 𝐵)
162, 15elrpd 9474 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
17 nnz 9066 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1817ad2antrl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
19 rpexpcl 10305 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑗 ∈ ℤ) → (𝐵𝑗) ∈ ℝ+)
2016, 18, 19syl2anc 408 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
21 eluzelz 9328 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
2221ad2antll 482 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ ℤ)
23 rpexpcl 10305 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
2416, 22, 23syl2anc 408 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑘) ∈ ℝ+)
2520, 24lerecd 9496 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝐵𝑗) ≤ (𝐵𝑘) ↔ (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗))))
2610, 25mpbid 146 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)))
2724rprecred 9488 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ∈ ℝ)
2820rprecred 9488 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑗)) ∈ ℝ)
29 simpl1 984 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ+)
3029rpred 9476 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ)
31 lelttr 7845 . . . . . . 7 (((1 / (𝐵𝑘)) ∈ ℝ ∧ (1 / (𝐵𝑗)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3227, 28, 30, 31syl3anc 1216 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3326, 32mpand 425 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3433anassrs 397 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3534ralrimdva 2510 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) → ((1 / (𝐵𝑗)) < 𝐴 → ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
3635reximdva 2532 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
371, 36mpd 13 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962  wcel 1480  wral 2414  wrex 2415   class class class wbr 3924  cfv 5118  (class class class)co 5767  cr 7612  0cc0 7613  1c1 7614   < clt 7793  cle 7794   / cdiv 8425  cn 8713  cz 9047  cuz 9319  +crp 9434  cexp 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator