ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expubnd GIF version

Theorem expubnd 9442
Description: An upper bound on 𝐴𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 913 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝐴 ∈ ℝ)
2 2re 8030 . . . . 5 2 ∈ ℝ
3 peano2rem 7311 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
4 remulcl 7037 . . . . 5 ((2 ∈ ℝ ∧ (𝐴 − 1) ∈ ℝ) → (2 · (𝐴 − 1)) ∈ ℝ)
52, 3, 4sylancr 399 . . . 4 (𝐴 ∈ ℝ → (2 · (𝐴 − 1)) ∈ ℝ)
653ad2ant1 934 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (2 · (𝐴 − 1)) ∈ ℝ)
7 simp2 914 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝑁 ∈ ℕ0)
8 0le2 8050 . . . . . . 7 0 ≤ 2
9 0re 7055 . . . . . . . 8 0 ∈ ℝ
10 letr 7130 . . . . . . . 8 ((0 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
119, 2, 10mp3an12 1231 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
128, 11mpani 414 . . . . . 6 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → 0 ≤ 𝐴))
1312imp 119 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴)
14 resubcl 7308 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐴 − 2) ∈ ℝ)
152, 14mpan2 409 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 2) ∈ ℝ)
16 leadd2 7470 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
172, 16mp3an1 1228 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1815, 17mpdan 406 . . . . . . 7 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1918biimpa 284 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴))
20 recn 7042 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21 2cn 8031 . . . . . . . 8 2 ∈ ℂ
22 npcan 7253 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 − 2) + 2) = 𝐴)
2320, 21, 22sylancl 398 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 2) = 𝐴)
2423adantr 265 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) = 𝐴)
25 ax-1cn 7005 . . . . . . . . . 10 1 ∈ ℂ
26 subdi 7424 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
2721, 25, 26mp3an13 1232 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
28 2times 8081 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
29 2t1e2 8106 . . . . . . . . . . 11 (2 · 1) = 2
3029a1i 9 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 1) = 2)
3128, 30oveq12d 5555 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · 𝐴) − (2 · 1)) = ((𝐴 + 𝐴) − 2))
32 addsub 7255 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3321, 32mp3an3 1230 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3433anidms 383 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3527, 31, 343eqtrrd 2091 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3620, 35syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3736adantr 265 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3819, 24, 373brtr3d 3818 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 𝐴 ≤ (2 · (𝐴 − 1)))
3913, 38jca 294 . . . 4 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
40393adant2 932 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
41 leexp1a 9440 . . 3 (((𝐴 ∈ ℝ ∧ (2 · (𝐴 − 1)) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1)))) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
421, 6, 7, 40, 41syl31anc 1147 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
433recnd 7083 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ)
44 mulexp 9424 . . . . 5 ((2 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4521, 44mp3an1 1228 . . . 4 (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4643, 45sylan 271 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
47463adant3 933 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4842, 47breqtrd 3813 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 894   = wceq 1257  wcel 1407   class class class wbr 3789  (class class class)co 5537  cc 6915  cr 6916  0cc0 6917  1c1 6918   + caddc 6920   · cmul 6922  cle 7090  cmin 7215  2c2 8010  0cn0 8209  cexp 9384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-mulrcl 7011  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-precex 7022  ax-cnre 7023  ax-pre-ltirr 7024  ax-pre-ltwlin 7025  ax-pre-lttrn 7026  ax-pre-apti 7027  ax-pre-ltadd 7028  ax-pre-mulgt0 7029  ax-pre-mulext 7030
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-reu 2328  df-rmo 2329  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-if 3357  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-frec 6006  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843  df-0r 6844  df-1r 6845  df-0 6924  df-1 6925  df-r 6927  df-lt 6930  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-sub 7217  df-neg 7218  df-reap 7610  df-ap 7617  df-div 7696  df-inn 7961  df-2 8019  df-n0 8210  df-z 8273  df-uz 8540  df-iseq 9341  df-iexp 9385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator