ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f10 GIF version

Theorem f10 5187
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
f10 ∅:∅–1-1𝐴

Proof of Theorem f10
StepHypRef Expression
1 f0 5107 . 2 ∅:∅⟶𝐴
2 fun0 4984 . . 3 Fun ∅
3 cnv0 4754 . . . 4 ∅ = ∅
43funeqi 4949 . . 3 (Fun ∅ ↔ Fun ∅)
52, 4mpbir 138 . 2 Fun
6 df-f1 4934 . 2 (∅:∅–1-1𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ∅))
71, 5, 6mpbir2an 860 1 ∅:∅–1-1𝐴
Colors of variables: wff set class
Syntax hints:  c0 3251  ccnv 4371  Fun wfun 4923  wf 4925  1-1wf1 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934
This theorem is referenced by:  fo00  5189
  Copyright terms: Public domain W3C validator